

WECON LX3V-2PT2DA BD Board

WECON Technology Co., Ltd.

Website: http://www.we-con.com.cn/en Technical Support: liux@we-con.com.cn Skype: fcwkkj Phone: 86-591-87868869 Technical forum: http://wecon.freeforums.net/

I. Mounting instruction

Make sure to power off the PLC before mounting the 2PT2DA module and remove the top cover of PLC, screwed to the PLC.

Caution: when output current, make sure that the load resistance should be less than 500Ω , otherwise the output will be lower.

Warring: make sure to power off the PLC before mounting or removing the BD module.

II. The features of LX3V-2PT2DA-BD

It adds two analog inputs and two analog outputs. The module is mounted on top of PLC, so there is no need to change the PLC installation area.

Digital to analog conversion is performed by PT100 in LX3V-2PT2DA-BD, and the converted digital value is stored in a special registers. However, the characteristics of the analog to digital converter can not be adjusted. Address assignment in the following table.

Address	Description			
M8112	The flag of RTD type in CH1			
	OFF: RTD Type is PT100			
M8113	The flag of RTD type in CH2			
	OFF: RTD Type is PT100	ON: turn off		
M8114	The flag of CH3 output mode			
	OFF: current output mode(4-20mA:0-2000)			
M8115	The flag of CH4 output mode			
	OFF: current output mode(4-20mA:0-2000)			
D8112	CH1's temperature at 0.1 °C units			
D8113	CH2's temperature at 0.1 °C units			
D8114	The value of CH3			
D8115	The value of CH4			

III. Terminal Description and shape

The detail information of each terminal as following form table shows,

IN-2PT			
sensor type: 2 or 3 wires PT100			
L1+	First channel PT100 signal input (+)		
L1-	First channel PT100 signal input (-)		
L2+	Second channel PT100 signal input (+)		
L2-	Second channel PT100 signal input (-)		
VI-	Common		

OUT - 2DA				
Output current range: 4~20mA				
I1+	First channel current output (+)			
I1-	First channel current output (-)			
	No connection			
I2+	Second channel current output (+)			
I2-	First channel current output (-)			

IV. Specification

- 1. General Specifications: same as PLC main unit..
- 2. Power Specifications: Powered by PLC.
- 3. Performance Specifications:

Item	Explanation
Analog circuitry	DC 24V ±10%, 50mA
Digital circuitry	DC 5V, 90mA (From the PLC internal power supply)
Celsius	Read data by buffers

Analog input signal	PT100 sensor, 3 wires, 4 channels (CH1, CH2, CH3, CH4), 3850PPM/°C			
Sensor current	1mA			
Compensation range	-100°C - 600°C			
Digital output	-1000 - 6000			
	12 bits total, 11 bits for data and 1 bit for sign			
Accuracy	0.2°C - 0.3°C			
Overall accuracy	$\pm 1\%$			
Conversion rate	50ms			
Conversion characteristics	+6000 Digital Output -100°C -1000 Temperature°C Input			

V. Wiring

Explanation:

2-wire PT100: when using channel 1, short-circuit L1+ and VI-, connect PT100's 2 wires to L1+ and L1- respectively. the same setting in channel 2.

3-wire PT100: when using channel 1, two same color wires, connected to the L1- and VI-, the third one connect to L1+.

Warning: Please cut off the power firstly, before installation / removal of expansion boards to avoid electric shock or damage to the product.

Note:

1. Stay away from high-voltage cables to avoid interference or surge;

2. Grounding is required, but please do not share the ground site with high-voltage cable.

3. Do not weld any cable ends, and make ensure that the number of connecting cables, no more than a predetermined number.

1. Cable

- Connecting output device by AWG25-16.
- Terminal maximum tightening torque is 0.5 to 0.6 N.m

Types of cables and cross-sectional area

Туре	Cross-sectional(mm ²)	End
AWG26	0.1288	Stranded cable: Strip the sheath,
•	•	matching core wire connection
	•	cable.
AWG16	1.309	Single cable: Strip the sheath,
		connecting cables

2. I/O mode

PT100 input mode

VI. Examples

The value of each chanel's PT100 is storaged in the registers(D8112, D8113) in the form of digital.

For output, in each "END" instruction, M8114 and M8115 converts the digital value into an analog output.

1. Basic Programming

Note:

- M8112 and M8113 are used to analog to digital conversion for CH1 and CH2;
- 2PT only supports PT100;
- 2DA only supports current analog output;
- When M8112-M8115 are ON, the channels will not work, all showe "0";
- Don't try to change the value in D8112 or D8113, when finished the A/D conversion;

Example:

The following project sets CH1 and CH2 as PT100 input, and the value is storaged in D0 and D2.

The following projects set current output mode, and convert the data in D0 and D2 to analog value and output.

2. Application

Because LX3V-2PT2DA-BD no offset and gain function, so if the value is outside the range of values, it requires to use the four operations to complete the conversion.

Note:

- Because the use of additional programming instructions, so the accuracy and resolution of analog to digital conversion are changed;
- Original range of the analog output will not change;

RTD input mode:

In RTD input mode, 2PT covert a analog value to a digital value in degrees Celsius. If in the program was degrees Fahrenheit as a unit it needs to be converted to Celsius value.

Fahrenheit and Celsius conversion formula, Fahrenheit = Celsius * 9/5 + 32, the unit is 0.1 $^\circ \! \mathbb{C}$

M8000			Jpcr	NO1121	
		D8112	K9	D10	$D10=D8112 \times 9$
	DIV	D10	K5	D12]	$D12=D10 \div 5$ D0=D12+320
	[ADD	D12	K320	DO]	so $D0=D8112 \times 9 \div 5+320$

Current output mode:

In current output mode, 2DA covert digital value 0-2000 into an analog value 4-20mA. If the range of digital in the program was 0-A, it must be converted to 0-2000.

